Roll No. \square
Total No. of Questions: 07

B.Sc. (CS) (Sem.-6)

LINEAR ALGEBRA
Subject Code : BCS-602
M.Code : 72782

Date of Examination : 22-05-2023
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1 Answer the followings in short :
a. Check the system of vector $[-1,2,2],[2,-3,1],[10,-1,0]$, are linearly dependent or not.
b. What is meant by vector space? Give two examples.
c. What is meant by Basis of a vector space?
d. Examine whether or not $(1,1,1),(1,2,3),(2,-1,1)$ is basis of R^{3}.
e. Construct two subspaces of $R^{4}(R)$ such that; $\operatorname{dim} W_{1}=2, \operatorname{dim} W_{2}=2, \operatorname{dim}\left(W_{1} \cap W_{2}\right)$ $=1$.
f. What is meant by Linear Transformation?
g. Show that there is no non-singular linear transformation from R^{4} to R^{3}.
h. Explain Isomorphic spaces with two examples.
i. Find the matrix representation of $T: R^{2} \rightarrow R^{2}$ defined as $\mathrm{T}(x, y)=(3 x-4 y, x+5 y)$ with respect to the basis $B=\{(1,0),(0,1)\}$.
j. Explain Invariant subspace with two examples.

SECTION-B

2. Show that $\mathrm{V}=\{i \beta \mid \beta \in R$ (Reals) $\}$ is a vector space over field R where the addition of the space, and the scalar multiplication of the elements of V by those of R are respectively, the addition of complex numbers and the multiplication of a real number with a complex number.
3. Prove that the union of two subspaces is a subspace if one of them is a subset of the other.
4. Prove that any two basis of a finite dimensional vector space have same number of elements.
5. $\quad \mathrm{V}$ be vector space of 2×2 matrices over R and $\mathrm{P}=\left[\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right]$, define $T: V \rightarrow V$ be a linear transformation as $(A)=P A \forall A \in V$; Find a basis and dimension of null space of T and Range space of T.
6. Find the matrix representation of linear operator $T: R^{3} \rightarrow R^{3}$ defined by
$T(x, y, z)=(3 x+z,-2 x+y,-x+2 y+4 z)$ relative to the basis $B=(1,0,1),(-1,2,1)$, $(2,1,1)$.
7. $B_{1}=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}.\right\}$ and $B_{2}=\left\{w_{1}, w_{2}, \ldots \ldots, w_{n}\right\}$ be two ordered basis of vector space $\mathrm{V}(\mathrm{F})$ and P is the transition matrix from $B_{1}=\left\{v_{i}\right\}$ to $B_{2}=\left\{w_{i}\right\}$.

Prove that $\mathrm{P}\left[v ; B_{2}\right]=\mathrm{P}\left[v ; B_{1}\right]$ and $\left[v ; B_{2}\right]=P^{-1}\left[v ; B_{1}\right]$ for all $v \in V$.

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.

