|--|--|--|--|--|--|

Total No. of Pages : 02

Total No. of Questions : 07

B.Sc. (CS) (Sem.–6) LINEAR ALGEBRA Subject Code : BCS-602 M.Code : 72782 Date of Examination : 22-05-2023

Time : 3 Hrs.

Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

- **1** Answer the followings in short :
 - a. Check the system of vector [-1, 2, 2], [2, -3, 1], [10, -1, 0], are linearly dependent or not.
 - b. What is meant by vector space? Give two examples.
 - c. What is meant by Basis of a vector space?
 - d. Examine whether or not (1,1,1), (1, 2, 3), (2, -1, 1) is basis of R^3 .
 - e. Construct two subspaces of $R^4(R)$ such that; dim $W_1 = 2$, dim $W_2 = 2$, dim $(W_1 \cap W_2) = 1$.
 - f. What is meant by Linear Transformation?
 - g. Show that there is no non-singular linear transformation from R^4 to R^3 .
 - h. Explain Isomorphic spaces with two examples.
 - i. Find the matrix representation of $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as T(x, y) = (3x 4y, x + 5y) with respect to the basis $B = \{(1, 0), (0, 1)\}$.
 - j. Explain Invariant subspace with two examples.

SECTION-B

- 2. Show that $V = \{i \ \beta \ | \ \beta \in R \ (Reals)\}$ is a vector space over field R where the addition of the space, and the scalar multiplication of the elements of V by those of R are respectively, the addition of complex numbers and the multiplication of a real number with a complex number.
- 3. Prove that the union of two subspaces is a subspace if one of them is a subset of the other.
- 4. Prove that any two basis of a finite dimensional vector space have same number of elements.
- 5. V be vector space of 2 × 2 matrices over R and P = $\begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix}$, define T: V \rightarrow V be a linear transformation as (A) = PA $\forall A \in V$; Find a basis and dimension of null space of T and Range space of T.
- 6. Find the matrix representation of linear operator $T: \mathbb{R}^3 \to \mathbb{R}^3$ defined by

T(x, y, z) = (3x + z, -2x + y, -x + 2y + 4z) relative to the basis B = (1,0,1), (-1,2,1), (2,1,1).

7. $B_1 = \{v_1, v_2, \dots, v_n\}$ and $B_2 = \{w_1, w_2, \dots, w_n\}$ be two ordered basis of vector space V(F) and P is the transition matrix from $B_1 = \{v_i\}$ to $B_2 = \{w_i\}$.

Prove that $P[v; B_2] = P[v; B_1]$ and $[v; B_2] = P^{-1}[v; B_1]$ for all $v \in V$.

NOTE : Disclosure of identity by writing mobile number or making passing request on any page of Answer sheet will lead to UMC case against the Student.