Roll No.						
	 	 	 	 -	 	

Total No. of Pages : 02

Total No. of Questions : 09

M.Sc.(IT)/MCA (Sem.-4) THEORY OF COMPUTATION Subject Code : PGCA-1927 Paper ID : 79692 Date of Examination : 09-07-22

Time: 3 Hrs.

Max. Marks : 70

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying TEN marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

1. Write short notes on :

- a) Moore Machine
- b) NDFA
- c) Arden's Theorem
- d) Left context
- e) UNIT Production
- f) Acceptability of a string
- g) Ambiguous Grammar
- h) TM
- i) GNF
- j) Type2 grammar.

SECTION-B

- 2. Differentiate between DFA and NDFA. Discuss to covert NDFA to DFA.
- 3. Find a reduced grammar equivalent to the given grammar.

 $S \rightarrow AC \mid B, A \rightarrow a, C \rightarrow c \mid BC, E \rightarrow aA \mid e.$

4. Construct a Moore machine equivalent to the Mealy machine M defined by following :

Present State	Next State								
	a	= 0	a = 1						
	State	Output	State	Output					
$\rightarrow q_1$	q_1	1	q_2	0					
q_2	q_4	1	q_4	1					
q_3	q_2	1	q_3	1					
q_4	q_3	0	q_1	1					

5. Find a grammar in GNF equivalent to the grammar

$$E \rightarrow E + T \mid T$$
 $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid a$

SECTION-C

- 6. Describe any two representation of TM.
- 7. Design PDA for $\{wcw^T | w = \{a, b\}^*\}$.
- 8. Describe the universality of Turing Machines and Cook-Levin Theorem.
- 9. Design Turing Machine of $\{0^n l^n | n \ge 1\}$.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.