Roll No.
Total No. of Pages : 02
Total No. of Questions: 09
B.Sc. (Non-Medical) (Sem.-6)

PHYSICAL CHEMISTRY-IV
Subject Code : BSNM-602-18
M.Code : 79494

Date of Examination : 04-07-22
Time : 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE marks each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Determine whether the following operator is linear or nonlinear :

$$
\hat{\operatorname{A}} f(x)=\operatorname{SQRT} f(x),(\text { where }, \operatorname{SQRT}=\text { square root })
$$

b) Test whether d / dx is Hermitian operator or not.
c) How many microstates are possible for p^{3} configuration?
d) Write the conditions for two wave functions, $\Psi i(x)$ and $\Psi \mathrm{j}(x)$ to be orthonormal.
e) Calculate the number of degenerate states for hydrogen atom for $\mathrm{n}=4$.
f) What is the number of atoms in a unit cell of a face-centred cubic crystal?
g) Write down the mathematical expression of Bragg's law.
h) Define unit cell.
i) State Stark-Einstein law.
j) Mention any example of non-radiative process.

SECTION-B

2. Briefly explain about photoelectric effect.
3. State de Broglie hypothesis and Heisenberg uncertainty principle.
4. Energy of a particle in a cube with dimension L is given by $14 \mathrm{~h} 2 / 8 \mathrm{~L} 2 \mathrm{~m}$. Calculate the degeneracy.
5. State and explain Grotthus-Draper law and mention limitations.
6. Calculate Miller indices of plane cut through the crystal axes at $(-2 \mathrm{a}, 4 \mathrm{~b},-8 \mathrm{c})$.

SECTION-C

7. a) Calculate the probability of finding a particle in 1-D box of length L in region between $\mathrm{L} / 4$ and $3 \mathrm{~L} / 4$ for quantum number $(\mathrm{n})=1$.
b) Write a short note on heat capacity of solids.
8. Write a short note on:
a) Quantum yield
b) Jablonsky diagram.
9. Briefly explain unit cell and space lattice.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

