Roll No. \square Total No. of Pages : 02
Total No. of Questions: 09

> B.Sc. (Non Medical) (Sem.-4)
> LINEAR ALGEBRA
> Subject Code : BSNM-406-18
> M.Code : 77684
> Date of Examination : 13-07-22

Time : 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) Check whether set of vectors are linearly independent $(1,3,2),(1,-7,-8),(2,1,-1)$.
b) Check whether T is linear transformation $T: R^{2} \rightarrow R^{3}$ defined by

$$
\mathrm{T}(x, y, z)=(x+1,2 y, x+y)
$$

c) For what value of K will the vector $V=(1, K,-4) \in V_{3}(R)$ is linear combination of $\mathrm{V}_{1}=(1,-3,2)$ and $\mathrm{V}_{2}=(2,-1,1)$
d) Find rank of the matrix $\left[\begin{array}{rrr}2 & 1 & -1 \\ 3 & 2 & 4 \\ -1 & 3 & 2\end{array}\right]$
e) Define Echlon form of a matrix
f) State Rank Nullity theorem.
g) Find eigen values and eigen vectors of matrix $\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$. Check whether W is subspace of V.
h) V is set of all $3 * 1$ real matrices with usual addition \& scalar multiplication \& W consisting of all $3^{*} 1$ real matrices of form $\left[\begin{array}{l}a \\ b \\ 2\end{array}\right]$. Check whether W is subspace of V .
i) If A and B are Hermitian matrices. Show that $A B$ is Hermitian iff $A B=B A$.
j) Show characteristic roots of A^{θ} are conjugate of characteristic roots of A .

SECTION-B

2. Let $\mathrm{T}: \mathrm{R}^{2} \rightarrow \mathrm{R}^{2}$ be linear operator defined by $\mathrm{T}(x, y)=(4 x-2 y, 2 x+y)$. Find matrix of T relative to basis $=\{(1,1),(-1,0)\}$.
3. Write linear transformation corresponding to $\mathrm{A}=\left[\begin{array}{rrr}2 & 0 & 3 \\ -5 & 1 & 6 \\ 4 & -7 & 8\end{array}\right]$.
4. Examine whether following set form basis $(1,1,1),(1,2,3),(-1,0,1)$.
5. Examine consistency of equation $x+2 y-z=3,3 x-y+2 z=1,2 x-2 y+3 z=2$, $x-y+z=-1$. If consistent, find complete solution.
6. Let V be a vector space \& $\mathrm{T}: \mathrm{v} \rightarrow \mathrm{V}$ is linear transformation. Show that $\mathrm{R}(\mathrm{T}) \cap \mathrm{N}(\mathrm{T})=\{0\}$ iff for all $v \in \mathrm{~V}, \mathrm{~T}(\mathrm{~T}(\mathrm{v}))=0$ implies $\mathrm{T}(\mathrm{v})=0$.

SECTION-C

7. Prove that union of two subspaces is a subspace iff one is subset of other.
8. a) Find basis \& dimension of range space $\&$ null space for $T: R^{3} \rightarrow R^{3}$ defined by $\mathrm{T}(x, y, z)=(x+2 y, y-z, x+2 z)$
b) Find inverse of matrix $\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$ by using row transformation.
9. State and Prove Cayley Hamilton theorem.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

