Roll No.		Total N	o. of Pages:02
Total No. of Quest	ions : 09		
	B.Sc. (Non Medical)	(Sem.–4)	
	ANALYSIS-	· II	
	Subject Code : BSN	M-405-18	
	M.Code:776	83	
	Date of Examination :	11-07-22	
Time:3 Hrs.			Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- 1. Write briefly :
 - a) What do you mean by uniform convergence of sequences?
 - b) State Weierstrass approximation theorem.

- c) Prove that $\sum \frac{(-1)^{n-1}}{n}$ is uniformly convergent in [0, 1].
- d) What do you mean by pointwise convergence of sequence of functions?
- e) Evaluate grad e^{r^2} where $r^2 = x^2 + y^2 + z^2$.
- f) Find div \vec{F} , at (1, -1, 1) where $\vec{F} = xy^2 \hat{i} + 2x^2 y \hat{j} 3xyz^2 \hat{k}$.
- g) State Drichlet's test.
- h) If $\overrightarrow{\upsilon}$ is constant prove that curl $\overrightarrow{\upsilon} = \overrightarrow{o}$.
- i) Write Euler formulae for Fourier Series.
- j) State Drichlet conditions for fourier series.

SECTION-B

2. Apply W.M. test to show that the series $\sum \frac{a_n x^n}{1+x^{2n}}$ convergence uniformly $\forall x \in \mathbb{R}$ if $\sum a_n$ is absolutely convergent.

3. Prove that the sequence $\{f_n(x)\}$ when $f_n(x) = x^{n-1}(1-x)$ converges uniformly in [0, 1].

4. If
$$r = \sqrt{x^2 + y^2 + z^2}$$
, show that div $[\operatorname{grad} f(r)] = f''(r) + \frac{2}{r}f'(r)$.

5. State and prove Green's theorem.

6. Find the fourier series in the interval (-2, 2) when
$$f(x) = \begin{cases} 0, -2 < x < 0 \\ 1, 1 < x < 0 \end{cases}$$
.

SECTION-C

7. Prove that the series $\cos x + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \dots$ converges uniformly on R.

- 8. Verify Gauss's Divergence theorem for $\overrightarrow{F} = x \, \widehat{i} + y \, \widehat{j} + z \, \widehat{k}$ over the region bounded by the planes x = 0, x = a, y = 0, y = a, z = 0, z = a.
- 9. Obtain the fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.