Roll No.
Total No. of Questions : 09

> B.Sc. (Non Medical) (Sem.-4)
> ANALYSIS-II
> Subject Code : BSNM-405-18
> M.Code : 77683
> Date of Examination : 11-07-22

Time : 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly :
a) What do you mean by uniform convergence of sequences?
b) State Weierstrass approximation theorem.
c) Prove that $\sum \frac{(-1)^{n-1}}{n}$ is uniformly convergent in $[0,1]$.
d) What do you mean by pointwise convergence of sequence of functions?
e) Evaluate grad $e^{r^{2}}$ where $r^{2}=x^{2}+y^{2}+z^{2}$.
f) Find div \vec{F}, at $(1,-1,1)$ where $\vec{F}=x y^{2} \hat{i}+2 x^{2} y \hat{j}-3 x y z^{2} \hat{k}$.
g) State Drichlet's test.
h) If \vec{v} is constant prove that $\operatorname{curl} \overrightarrow{\mathrm{v}}=\vec{o}$.
i) Write Euler formulae for Fourier Series.
j) State Drichlet conditions for fourier series.

SECTION-B

2. Apply W.M. test to show that the series $\sum \frac{a_{n} x^{n}}{1+x^{2 n}}$ convergence uniformly $\forall x \in \mathrm{R}$ if $\sum a_{n}$ is absolutely convergent.
3. Prove that the sequence $\left\{f_{n}(x)\right\}$ when $f_{n}(x)=x^{n-1}(1-x)$ converges uniformly in $[0,1]$.
4. If $r=\sqrt{x^{2}+y^{2}+z^{2}}$, show that $\operatorname{div}[\operatorname{grad} f(r)]=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.
5. State and prove Green's theorem.
6. Find the fourier series in the interval $(-2,2)$ when $f(x)=\left\{\begin{array}{ll}0, & -2<x<0 \\ 1, & 1<x<0\end{array}\right.$.

SECTION-C

7. Prove that the series $\cos x+\frac{\cos 2 x}{2^{2}}+\frac{\cos 3 x}{3^{2}}+\ldots$. . converges uniformly on R .
8. Verify Gauss's Divergence theorem for $\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}$ over the region bounded by the planes $x=0, x=a, y=0, y=a, z=0, z=a$.
9. Obtain the fourier series for $f(x)=e^{-x}$ in the interval $0<x<2 \pi$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

