Roll No. \square Total No. of Pages: 02
Total No. of Questions : 09

B.Sc.(Non Medical)(2018 Batch)(Sem.-2)
 THEORY OF EQUATIONS
 Subject Code :BSNM-206-18

M.Code :76304

Date of Examination : 16-07-22
Time : 3 Hrs.
Max. Marks : 50

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE mark each.
2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1) Write briefly :
a) Show that the equation $x^{8}-x^{3}+x^{2}-x+1=0$ must have at least 4 non-real roots.
b) Construct a cubic polynomial $f(x)$ having following properties
(i) $f(0)=1$
(ii) $f(1)=3$
(iii) Sum of zeros $=2$
c) Round off the numbers 865250 and 37.46235 to four significant figures. Hence compute absolute and relative error in each case.
d) Convert 55.125 into Binary form.
e) Define order of convergence of an iterative method.
f) Discuss the nature of roots of the equation $x^{3}+2 x+1=0$.
g) Solve the equation $32 x^{3}-48 x^{2}+22 x-3=0$, the roots being in A.P.
h) Find all integral roots of the equation $x^{5}+x^{4}-x^{3}-x^{2}-2 x-2=0$.
i) Remove the second term from $x^{4}+4 x^{3}+2 x^{2}-4 x-2=0$.
j) Give geometric interpretation of Newton Raphson method.

SECTION-B

2. The solution of a problem is given as 25.35 with relative error atmost 3%.Find the range of values in which the exact value of the solution lies.
3. Find the condition that the roots of the equation $a x^{3}+b x^{2}+c x+d=0$, where a is nonzero, may be in A.P.
4. Use Cardan's method to solve $x^{3}-6 x-9=0$.
5. Find a real root of the equation $3 x-\cos x-1=0$, correct to three decimal places, using Newton-Raphson method.
6. Show that for all values of k, the equation $x^{5}+2 x^{2}+3 x+k=0$ has at least two imaginary roots.

SECTION-C

7. a) If α, β, γ are the roots of $x^{3}-12 x^{2}+39 x-28=0$, find the equation whose roots are $\frac{1}{\alpha-2}, \frac{1}{\beta-2}, \frac{1}{\gamma-2}$.
b) Remove the second term from the equation $x^{4}-16 x^{3}+86 x^{2}-176 x+105=0$ and hence solve it completely.
8. a) Solve $x^{4}-10 x^{3}+35 x^{2}-50 x+24=0$ by Ferrari's Method.
b) Using Cardan's method, show that the roots of the equation $x^{3}-12 x+8=0$ are $4 \cos \frac{2 \pi}{9}, 4 \cos \frac{4 \pi}{9}, 4 \cos \frac{8 \pi}{9}$.
9. Use Method of False Position to obtain a root of $x^{3}-2 x-5=0$, correct to three decimalplaces.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

