Roll No.

Total No. of Pages : 02

Total No. of Questions : 09

B.Sc.(Non Medical)(2018 Batch)(Sem.–2) INTEGRAL CALCULUS Subject Code :BSNM-205-18 M.Code :76303 Date of Examination : 14-07-22

Time: 3 Hrs.

Max. Marks :50

INSTRUCTIONS TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying ONE marks each.
- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- 3. SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

- **1.** Solve the following :
 - a) Evaluate $\int \tan^{-1}x \, dx$.
 - b) Evaluate $\int \frac{x+1}{\sqrt{x^2-x+1}} dx$.
 - c) Show that $\int_0^{\pi/4} \log(1 + \tan \theta) d\theta = \frac{\pi}{8} \log 2$.
 - d) Find the whole length of the asteroid $x^{2/3} + y^{2/3} = a^{2/3}$.
 - e) Find the area of a loop of the curve $r^2 = a^2 \cos 2\theta$.
 - f) Find reduction formula for $\int \tan^n x \, dx$.
 - g) Change the order of integration in $\int_0^a \int_0^{\sqrt{a^2 x^2}} f(x, y) \, dx \, dy$.
 - h) Find the value of dxdy when the variables are changed using $x = r \cos \theta$, $y = r \sin \theta$.
 - i) Evaluate $\int \frac{1}{1+\sin h x} dx$.
 - j) Evaluate $\int \operatorname{sech}^{-1} x dx$.

SECTION-B

2. Evaluate
$$\int \frac{1+x^2}{1+x^4} dx$$
.

3. Show that
$$\int_0^{\pi/2} \log \sin x \, dx = -\frac{\pi}{2} \log 2.$$

4. Find the volume of the solid obtained by revolving one arc of the cycloid $x = a (\theta + \sin \theta)$, $y = a(1 + \cos \theta)$.

5. Show that the area bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.

6. Find the volume of the solid bounded by the surfaces $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.

SECTION-C

7. If
$$I_{m,n} = \int_0^{\pi/2} \cos^m x \cos nx \, dx$$
, prove that $I_{m,n} = \frac{m(m-1)}{m^2 - n^2} I_{m-2,n}$.

- 8. Evaluate the integral $\iint_R (x-y)^2 \cos^2(x+y) dx dy$, where **R** is the region bounded by $(\pi, 0), (2\pi, \pi), (\pi, 2\pi)$ and $(0, \pi)$.
- 9. Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.