Roll No. \square
Total No. of Questions : 07
M.Sc. Mathematics (2018 Batch) (Sem.-2)

ALGEBRA-II
Subject Code : MSM-201-18
M.Code : 75962

Date of Examination : 04-07-22

Time : 3 Hrs.
Max. Marks: 70

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of FIVE questions carrying TWO marks each.
2. SECTION-B \& C have THREE questions each.
3. Attempt any FOUR questions from SECTION B \& C carrying FIFTEEN marks each.
4. Select atleast TWO questions from SECTION - B \& C each.

SECTION-A

1. Attempt the following :
a) State division algorithm in polynomial ring $R[x]$.
b) Show that $x^{3}-x-1 \in Q[x]$ is irreducible over Q.
c) Prove that every finite extension of field is algebraic extension.
d) Define fixed field of group of automophisms with suitable example.
e) Find the degree of $Q(\sqrt[3]{3}, \sqrt[4]{5})$ over Q.

SECTION-B

2. Let R be a Unique Factorization Domain. Then show that polynomial ring $\mathrm{R}[\mathrm{x}]$ over R is a Unique Factorization Domain.
3. a) Let $f(x) \in F[x]$ be a non constant polynomial. Show that there exists an extension E of F in which $f(x)$ has a root.
b) Show that the product of two primitive polynomials is primitive.
4. Let E be an algebraic extension of F and $\sigma: E \rightarrow E$ be an embedding of E into itself over F. Then, show that σ is an automorphism. Also prove an element α of extension K is algebraic over F if and only if $[F(\alpha): F]$ is finite.

SECTION-C

5. a) State and prove fundamental theorem of Algebra.
b) Show that Galois group of $x^{4}+1 \in Q[x]$ is the Klein four-group.
6. Let E be a finite separable extension of a field F . Show that following are equivalent :
a) E is normal Extension of F .
b) F is a fixed field of $G(E / F)$.
c) $[\mathrm{E}: \mathrm{F}]=|\mathrm{G}(\mathrm{E} / \mathrm{F})|$
7. Show that there exists an algebraically closed field K containing F as a subfield. Also, prove that the splitting field of $x^{3}+x^{2}+1 \in \mathrm{Z} /(2)[x]$ is a finite field with 8 elements.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

