Roll No. \square
Total No. of Questions : 07
B.Sc.(IT) (Sem.-2)

DIGITAL CIRCUITS \& LOGIC DESIGN
Subject Code : BSIT-204
M.Code : 72727

Date of Examination : 12-07-22
Time : 3 Hrs.
Max. Marks : 60

INSTRUCTIONS TO CANDIDATES :

1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
2. SECTION-B contains SIX questions carrying TEN marks each and students have to attempt any FOUR questions.

SECTION-A

1) Answer briefly :
a) What is De-Morgan's theorem?
b) Define NAND and NOR Gates.
c) What do you mean by sequential circuits?
d) Define ALU.
e) Define Half Subtractor.
f) What is difference between a multiplexer and encoder?
g) What do you mean by clock?
h) What is a latch?
i) Define modulus of counter.
j) What is a priority encoder?

SECTION-B

2) a) Illustrate the operation of basic flip-flop using NOR gates.
b) Explain excitation tables for JK and T flip-flops.
3) a) Classify the different types of Counters.
b) Explain the operation of the 4-bit asynchronous counter.
4) Explain expanded form and canonical form of Boolean expression using example.
5) Explain full adder with proper logic circuit diagram.
6) What is a Multiplexer? Draw a logic diagram of 8×1 lines multiplexer with enable HIGH line with its truth table.
7) Simplify the following Boolean expression using Karnaugh map method.
a. $\quad F=X^{\prime} Y Z+X^{\prime} Y Z^{\prime}+X Y Z '+X Y^{\prime} Z$
b. $\mathrm{F}(x, y, z)=\Pi(0,1,4,5)$.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

