

Total No. of Pages : 02

Total No. of Questions : 07

B.Sc. (Computer Science) (Sem.–4) ATOMIC MOLECULAR & SPECTROSCOPY Subject Code : BCS-403 M.Code : 72319 Date of Examination : 11-07-22

Time: 3 Hrs.

Max. Marks : 60

INSTRUCTION TO CANDIDATES :

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and a student has to attempt any FOUR questions.

SECTION-A

- 1. Answer briefly :
 - a) Explain the term atomic spectra.
 - b) Define Balmer series.
 - c) What is normal Zeeman effect?
 - d) Do $2^2S_{1/2}$ and $2^2Pi/2$ states of hydrogen atom have same energy? Explain your answer.
 - e) What is the importance of Lamb Shift?
 - f) Explain stimulated emission.
 - g) What are the components of Laser?
 - h) Which is more efficient three level or four level lasers. Explain your answer
 - i) Write properties of Laser.
 - j) Define Holography.

SECTION B

- 2. Describe Stern-Garlach experiment. Discuss how it explained space quantisation and electron spin.
- 3. What is L-S coupling? Give the selection rules for L-S coupling scheme.
- 4. How does the spin-orbit interaction when combined with the relativity correction, explain the hydrogen fine structure?
- 5. Discuss the kinetics of optical abortion and hence derive Fauchber Ledenberg formula.
- 6. Discuss with suitable diagrams, the principle, construction, working and theory of Nd:YAG laser.
- 7. Specify three possible types of transitions between two atomic energy levels and derive relations between Einstein's coefficients.

NOTE : Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.