Roll No. Total No. of Pages: 03

Total No. of Questions: 09

MCA (2015 & Onwards) (Sem.- 2) MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE

M Code: 72876 Subject Code: MCA-201 Paper ID: [72876]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTIONS-A, B, C & D contains TWO questions each carrying TEN marks and students have to attempt any ONE question from each SECTION.
- 2. SECTION-E is COMPULSORY consisting of TEN questions carrying TWENTY marks in all.
- 3. Use of non-programmable calculator is allowed.

SECTION A

1. Prove by mathematical induction that for any natural number n:

$$1^3 + 2^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$$

2. Give comparison between Eulerian path and Hamiltonian path. Justify with example.

SECTION B

3. Assume p(x), q(x) and r(x) denote the following statements:

10

10

$$p(x): x^2 - 8x + 15 = 0$$

q(x): x is odd

For the domain of all integers, determine the truth-value of each of the following statements. If a universal statement is false, give a counterexample. If an existential statement is true, give an example.

- a) $\forall x[p(x) \rightarrow q(x)]$
- b) $\exists x [q(x) \rightarrow p(x)]$
- c) $\exists x [r(x) \rightarrow p(x)]$

M-72876 Page 1 of 3

d)
$$\forall x [\neg q(x) \rightarrow \neg p(x)]$$

e)
$$\forall x[(p(x) \lor q(x) \to r(x)]$$

- 4. a) Let $R = \{(1,2), (2,3), (3,1)\}$ and $A = \{1, 2, 3\}$, find the reflexive, symmetric and transitive closure of R, using
 - i) Composition of relation R.
 - ii) Composition of matrix relation R.

b) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$. Also, compute its rank. 5

SECTION C

5. Explain the terms

- a) connected graph
- b) tree
- c) spanning tree
- d) Bipartite Graph
- e) Countable Sets
- 6. Solve the following system by using the Gauss-Jordan elimination method.

$$x + y + z = 5$$

$$2x + 3y + 5z = 8$$

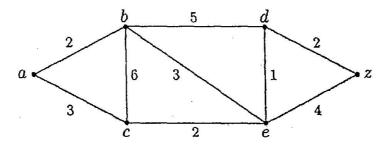
$$4x + 5z = 2$$

SECTION D

7. a) Using the laws of set theory, simplify each of the following:

i)
$$A \cap (B - A)$$

4


5

ii)
$$\overline{(A \cup B) \cap C} \cup \overline{B}$$

b) Prove that a planar graph G is 5-colorable.

6

8. Use Prim's algorithm to find a minimum spanning tree in the following weighted graph. Use alphabetical order to break ties. Write the algorithm also.

SECTION E

- 9. Write briefly:
 - a) Consider $A = \{a, b, c\}, B = \{x, y\}, and C = \{0, 1\}.$ Find C X B X A.
 - b) Determine whether function $f(x) = -3x^2 + 7$ is a bisection from R to R.
 - c) Compute the rank of matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$.
 - d) Draw truth table of \sim (p \wedge q) \equiv (\sim p) \vee (\sim q).
 - e) Give an example of graph that has neither an Eulerian circuit nor a Hamiltonian circuit.
 - f) When a well-formed formula is called as tautology? Give example.
 - g) Prove that $A B = A \cap \overline{B}$.
 - h) If A and B are two equivalent matrices, then show that rank A = rank B.
 - i) What is the significance of graph coloring?
 - j) Give the justification whether the sentence "What is the weather today?" is a proposition or not.