Roll No. Total No. of Pages: 02

Total No. of Questions: 07

B.Sc. (IT) (2015 & Onwards) (Sem. - 2) DIGITAL CIRCUITS & LOGIC DESIGN

M Code: 72727 Subject Code: BSIT-204 Paper ID: [72727]

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- 1. SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION-B contains SIX questions carrying TEN marks each and students has to attempt any FOUR questions.

SECTION A

- 1. a) What is hexadecimal number system?
 - b) Write the truth table of NAND gate.
 - c) What is 2's complement?
 - d) What is Involution law?
 - e) What is DeMorgan's law?
 - f) What are the Boolean postulates?
 - g) What is edge triggered flip flop?
 - h) What is synchronous counter?
 - i) What is latch?
 - j) Differentiate between half adder and full adder.

SECTION B

- 2. Explain the algebraic functions and truth tables of AND, OR, NOT, XOR and NOR gates with examples.
- 3. a) Convert 5A (hexadecimal) to octal. Explain the steps involved.
 - b) Minimize the following Boolean expression:

$$y = A. (A + B) + B. (\overline{A} + B)$$

M-72727 Page 1 of 2

- 4. Explain the design of parallel binary adder and binary adder and subtractor.
- 5. Implement the following function with a multiplexer:

$$F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$$

- 6. a) What is race condition? Explain the procedure for removing race condition with example.
 - b) Explain the steps involved in the design of asynchronous counters.
- 7. Draw the circuit diagram of mod-6 counter using J-K flip flops.

M-72727 Page 2 of 2