Roll No.

Total No. of Pages: 02

Total No. of Questions: 18

B.Tech. (2012 to 2017) (Sem.-1) ENGINEERING MATHEMATICS-I

Subject Code: BTAM-101 M.Code: 54091

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

- SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.
- 2. SECTION B & C. have FOUR questions each.
- 3. Attempt any FIVE questions from SECTION B & C carrying EIGHT marks each.
- 4. Select atleast TWO questions from SECTION B & C.

SECTION-A

Solve the following:

- 1. Define point of inflexion.
- 2. Find total derivative of $z = tan^{-1} \left(\frac{x}{y}\right)$.
- 3. Using differentials, find appropriate value of $\sqrt{(298)^2 + (401)^2}$.
- 4. Find volume of unit sphere using triple integral.
- 5. Find the directional derivative of $f(x, y, z) = xy^2 + 4xyz + z^2$ at point (1, 2, 3) in direction of $3\hat{i} + 4\hat{j} 5\hat{k}$
- 6. Prove curl (grad f) = 0, where f is differentiable scalar field.
- 7. State Gauss divergence theorem.
- 8. Find the work done by the force $F = -xy\hat{i} + y^2\hat{j} + z\hat{k}$ in moving a particle over the circular path $x^2 + y^2 = 4$, z = 0 from (2, 0, 0) to (0, 2, 0).
- 9. Evaluate $\iint (x^2 + y^2) dxdy$ over the unit circle.
- 10. Find $\frac{dy}{dx}$ when $x^y + y^x = \alpha$, where α is any constant.

1 M-54091 (S1)-244

SECTION-B

11. If
$$u = \sin^{-1}\left(\frac{x^3 + y^3 + z^3}{ax + by + cz}\right)$$
, then prove that $xu_x + yu_y + zu_z = 2 \tan u$.

- 12. A rectangular box open at top is to have volume of 32 cubic feet. Find dimensions of box requiring least material for its construction.
- 13. a) Find length of four cusped hypocycloid $x = a \cos^3 \theta$, $y = b \sin^3 \theta$.
 - b) Find volume generated by revolution of cardiod $r = a (1 \cos \theta)$ about x axis.
- 14. Find the curvature at point $\left(\frac{3a}{2}, \frac{3a}{2}\right)$ of curve $x^3 + y^3 = 3$ axy.

SECTION-C

- 15. Evaluate the surface integral $\iint F.n \ dA$ where $F = 6z\hat{i} + 6\hat{j} + 3y\hat{k}$ and S is the portion of the plane 2x + 3y + 4z = 12, which is in the first octant?
- 16. Give physical interpretation of divergence.
- 17. Verify Stoke's theorem for vector field $V = (3x-y)\hat{i} 2yz^2\hat{j} 2y^2z\hat{k}$ where S is surface of sphere $x^2 + y^2 + z^2 = 16$, z > 0.
- 18. Evaluate $\iiint \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}$, over the region $x^2+y^2+z^2=1$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.

2 | M-54091 (S1)-244