Roll No.

Total No. of Pages: 02

Total No. of Questions: 09

B.Sc. (Hons)Agriculture (2019 Batch) (Sem.-1)

ELEMENTARY MATHEMATICS

Subject Code: BSAG-106-19(B)

M.Code: 76930

Time: 3 Hrs. Max. Marks: 60

INSTRUCTIONS TO CANDIDATES:

 SECTION-A is COMPULSORY consisting of TEN questions carrying TWO marks each.

- 2. SECTION-B contains FIVE questions carrying FIVE marks each and students have to attempt any FOUR questions.
- SECTION-C contains THREE questions carrying TEN marks each and students have to attempt any TWO questions.

SECTION-A

1. Write briefly:

- a) If the angle between two lines is $\frac{\pi}{4}$ and slope of one of the lines is $\frac{1}{2}$, find the slope of the other line.
- b) Find the equation of a line perpendicular to the line x 2y 3 = 0 and passing through the point (1, -1).
- c) Find centre and radius of the circle with equation $x^2 + y^2 + 8x + 10y 8 = 0$.
- d) Evaluate $\lim_{x \to \infty} \frac{\sqrt{1+x}-1}{x}$.
- e) Find $\frac{dy}{dx}$ for $y = \frac{x+1}{x-1}$.
- f) If $A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, then verify that $(AB)^T = B^T A^T$.
- g) Evaluate $\int \frac{1-\sin x}{\cos^2 x} dx$.

h) For
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}$, find AB and BA.

- i) Differentiate $y = xe^x$ with respect to x.
- j) Evaluate $\int \frac{dx}{e^x + e^{-x}}$.

SECTION-B

- 2. Find the area of a triangle with vertices (4, 4), (3, -2) and (-3, 16).
- 3. Find the derivative of f(x) using the first principle where $f(x) = \sin x$.
- 4. Evaluate $\int e^{-3x} \sin x \, dx$.

5. Find
$$\frac{1}{2}$$
 (A + A^T) and $\frac{1}{2}$ (A - A^T) when A = $\begin{bmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{bmatrix}$.

6. Prove that
$$\begin{bmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{bmatrix} = 4abc.$$

SECTION-C

- 7. Find the condition that the line y = mx + c is tangent to the circle $x^2 + y^2 = a^2$.
- 8. If $y = \sin^{-1} x$, show that $(1 x^2) \frac{d^2 y}{dx^2} x \frac{dy}{dx} = 0$.
- 9. Find inverse of the matrix $A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}$.

NOTE: Disclosure of Identity by writing Mobile No. or Making of passing request on any page of Answer Sheet will lead to UMC against the Student.